The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles
نویسندگان
چکیده
Plants may exhibit some degree of acclimation after experiencing drought, but physiological adjustments to consecutive cycles of drought and re-watering (recovery) have scarcely been studied. The Mediterranean evergreen holm oak (Q. ilex) and the semi-deciduous rockrose (C. albidus) showed some degree of acclimation after the first of three drought cycles (S1, S2, and S3). For instance, during S2 and S3 both species retained higher relative leaf water contents than during S1, despite reaching similar leaf water potentials. However, both species showed remarkable differences in their photosynthetic acclimation to repeated drought cycles. Both species decreased photosynthesis to a similar extent during the three cycles (20-40% of control values). However, after S1 and S2, photosynthesis recovered only to 80% of control values in holm oak, due to persistently low stomatal (g(s)) and mesophyll (g(m)) conductances to CO(2). Moreover, leaf intrinsic water use efficiency (WUE) was kept almost constant in this species during the entire experiment. By contrast, photosynthesis of rockrose recovered almost completely after each drought cycle (90-100% of control values), while the WUE was largely and permanently increased (by 50-150%, depending on the day) after S1. This was due to a regulation which consisted in keeping g(s) low (recovering to 50-60% of control values after re-watering) while maintaining a high g(m) (even exceeding control values during re-watering). While the mechanisms to achieve such particular regulation of water and CO(2) diffusion in leaves are unknown, it clearly represents a unique acclimation feature of this species after a drought cycle, which allows it a much better performance during successive drought events. Thus, differences in the photosynthetic acclimation to repeated drought cycles can have important consequences on the relative fitness of different Mediterranean species or growth forms within the frame of climate change scenarios.
منابع مشابه
Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity?
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long-term throughfall exclusion. Gas exchan...
متن کاملWater relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown o...
متن کاملCorrelation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus
The anatomical and morphological leaf traits as well as leaf inclination and orientation per different leaf age cohort of Quercus ilex, Phillyrea latifolia and Cistus incanus growing in the Mediterranean maquis along Rome’s coast-line (Italy) were investigated. Specific leaf weight (SLW), total leaf thickness (L), leaf density index and leaf inclination (a) changed according to leaf age. The ma...
متن کاملWater-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought.
In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn l...
متن کاملSeasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions.
In all Mediterranean-type ecosystems, evergreen and deciduous trees differing in wood anatomy, growth pattern and leaf habit coexist, suggesting distinct adaptative responses to environmental constraints. This study examined the effects of summer water stress on carbon (C) storage and growth in seedlings of three coexisting Mediterranean trees that differed in phenology and wood anatomy charact...
متن کامل